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Abstract

Aggregation in peer-to-peer networks provides a global view of system properties,

such as average computational load and total free disk space, which can be used for

administering the system. Among the various aggregation protocols, gossip-based

aggregation protocols provide faster aggregation of the node values in a scalable

and adaptive manner. This is particularly important in peer-to-peer networks which

are essentially dynamic, due to node failures, node churn, communication delays

and communication failures. These dynamics affect the correctness of the system

aggregate, which is a function of the individual node values (node contributions).

We first propose a protocol hierarchy for gossip-based aggregation that provides

the capability to perform accurate estimation of the system aggregate, even in the

presence of node failures. In this protocol hierarchy, we develop a robustness protocol

for aggregation in dynamic peer-to-peer networks that ensures the correctness of

the system aggregate amidst node failures. Our protocol detects node failures and

performs the necessary cleanup operations. The evaluation of our protocol shows

that the error of the converged aggregate from the system aggregate is very low.

We observe that the failure detection time is independent of the network size and

the number of nodes that fail. Additionally, we investigate the factors affecting the

accuracy of a node’s estimate of the system aggregate (node estimate) and introduce

a metric called the ‘confidence value’ which gives an indication of this accuracy at

runtime. Hence, our robustness protocol enables accurate computation of system

aggregate even in the presence of node failures.
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CHAPTER 1

Introduction

Peer-to-peer networks are being extensively used in many commercial and sci-

entific applications [10]. For effective monitoring, control and management of the

peer-to-peer networks, a global view of the properties of the system is required. The

various properties of the nodes, e.g., the computational load and free disk space, are

represented by a set of node values, which we refer to as contribution of the nodes.

The aggregation of these node contributions, given by an aggregation function, pro-

vides a globalized view of the system, which can be used for administering the system.

The aggregation function can be the sum, average, maximum, and minimum among

others.

Over the past decade, a significant amount of research work has focussed on

developing aggregation protocols for peer-to-peer networks [6][3]. Among them, the

aggregation protocols based on gossiping enable faster computation of the system

aggregate in addition to being scalable and adaptive [6] [8] [9]. The nodes gossip

with each other their current estimate of the system aggregate (node estimate) and

recompute their node estimate based on the value they receive from the node with

which it gossiped. Hence, the node estimates change with time and converge towards

the system aggregate.

Peer-to-peer networks are essentially dynamic in nature, owing to the failure of

nodes, arrival and departure of nodes (node churn), message losses, communica-

tion delays, communication link failures etc. Consequently, the aggregation protocol

should include the necessary features that ensure the correctness of the system aggre-

gate under these conditions. There are works that handle the arrival of nodes, com-

munication delays and communication link failures during aggregation [6][4]. Our

work focuses on maintaining the correctness of the system aggregate and thereby,

the accuracy of the node estimates during aggregation in peer-to-peer networks when

nodes fail. By node failures, we refer to the failure of nodes or ungraceful departure of
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the nodes from the system. Maintaining the correctness of system aggregate means

conserving the system mass, which is the sum of the contributions of the nodes in

the network. In our work, we focus on the aggregation function that computes the

system average.

1.1. Problem Statement

We aim to address the following questions in our work :

(1) How to detect node failures during aggregation?

(2) What are the effects of node failures and node churn on aggregation and

what are the cleanup steps to be taken to maintain the correctness of the

system aggregate and the accuracy of the node estimates?

(3) Is it possible to determine the accuracy of the node estimates during aggre-

gation?

• What are the factors that determine the accuracy of the node estimate?

• How can the accuracy of the node estimate be determined?

1.2. Our Contributions

We study the effect of node failures and node churn on aggregation in peer-to-

peer networks. We introduce a protocol hierarchy for gossip-based aggregation that

provides the capability to perform accurate estimation of the system aggregate in-

spite of node failures. In this protocol hierarchy, we develop a robustness protocol

for aggregation in dynamic peer-to-peer networks that detects node failures during

aggregation. The protocol also performs the necessary cleanup steps that maintain

the correctness of the system aggregate and accuracy of the node estimates. Through

simulations and evaluations, we show that our protocol is successful in maintaining

the correctness of the system aggregate in case of node failures. Through experimen-

tal analysis, we investigate the factors which affect the accuracy of node estimates

during aggregation. We introduce a confidence metric that indicates the accuracy of

the node estimate under various dynamic conditions.
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1.3. Thesis Outline

In chapter 2, we describe the problem of aggregation in peer-to-peer networks

and the research work that has been done in this area. We explain the motivation

for our work. We introduce our robustness protocol in chapter 3, that includes a

scheme for detection of node failures during aggregation and a cleanup algorithm.

We compare the existing failure detection schemes and explain why we chose the

proposed detection mechanism. Finally, we study the cleanup steps to be performed

after detecting node failures and propose an algorithm that maintains the correctness

of the system aggregate even after node failures. In chapter 4, the experimental

setup of our simulations is explained and the evaluations done in static and dynamic

peer-to-peer networks are discussed along with the inferences drawn from it. The

performance of our protocol is also shown in the chapter. We study the factors

affecting the accuracy of node estimate in chapter 5. We introduce a metric called

the confidence value, which gives an indication of the accuracy of the node estimate

and show evaluations based on it. We conclude in chapter 6, mentioning the future

work which can be done in this direction.
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CHAPTER 2

Aggregation in Peer-to-Peer Networks

For the effective monitoring and control of peer-to-peer networks, a global view

of a system property, such as the average computational load or the total free disk

space, is required. Each node in the system has an associated numerical value, which

we refer to as the contribution of the node, which corresponds to a property of the

node, such as the computational load and the free disk space. The aggregation of

the contributions from all the nodes, given by an aggregation function, provides

a global view of the system. The computed aggregate can be the sum, average,

maximum, minimum, standard deviation, variance etc, of the node contributions.

The aggregation should be carried out in a decentralized manner, so that each of the

node in the system obtains the system aggregate.

In this chapter, we discuss the various aggregation protocols for peer-to-peer

networks. Next, the dynamicities in peer-to-peer networks are explained, followed

by the existing works that deal with aggregation in dynamic peer-to-peer networks.

We focus on protocols that compute the system average.

2.1. An Overview of Decentralized Aggregation protocols

There have been many works that describe aggregation protocols for peer-to-peer

networks. Decentralized aggregation protocols can be classified into tree-based ag-

gregation protocols [3] and gossip-based aggregation protocols[6][7][8][9]. Tree-based

aggregation protocols rely on constructing and maintaining a hierarchical structure

like a tree, which is used to compute the aggregate[3]. While this method has a low

message overhead, they require the runtime maintenance of a complex tree structure.

Also, they are not scalable and are reactive protocols, which means that the compu-

tation is performed for a specific query and it doesn’t reflect the changes due to the

dynamism of the system. In gossip-based aggregation protocols, the nodes compute
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aggregate through gossiping. Nodes periodically interact (gossip) with each other,

and modify their node estimates. After some rounds of gossiping, the node estimates

converge to the system average. Gossip-based aggregation protocols are better than

tree-based aggregation protocols because they are adaptive, that is, the computation

of aggregate value is continuous and considers the changes in the contributions of the

nodes over time. Also, gossip-based aggregation protocols are scalable and doesn’t

require the need for the maintenance of structures like trees required by tree-based

aggregation protocols. In our work, we focus on gossip-based aggregation protocols.

The protocols described in [6], [8] and [9] are gossip-based protocols for aggrega-

tion. In [8], the authors describe a push-based protocol which is asymmetric, where

the gossiping sessions affect the local estimate of the initiating node only. Protocols

described in [6] and [9] are push-pull based protocols, in which the local estimates of

the initiating node as well as receiving node is affected. Hence, push-pull style proto-

cols converge faster than push-based protocols. The protocol in [6] (Jelasity protocol)

is a lightweight, adaptive, decentralized aggregation protocol aimed at rapid conver-

gence and lesser cost. Compared to [9], the averaging operation in [6] is simpler and

cleaner, helping in faster convergence in stable peer-to-peer environments.

The basic averaging protocol that we use in our work is an adapted version of

the Jelasity protocol and will be described in the later sections.

2.2. Aggregation Protocols in Dynamic Peer-to-Peer Networks

Peer-to-Peer networks are highly dynamic, subject to sudden departure of nodes,

failure of nodes, arrival of new nodes to the system, message delays, message losses,

failure of communication links etc. Aggregation in a dynamic peer-to-peer network

is susceptible to these dynamicities of the system, as a result of which the correctness

of the system aggregate and thereby, the accuracy of the node estimates is affected.

Maintaining the correctness of system aggregate means conserving the system mass,

which is the sum of the contributions of the nodes in the network. In our work, we

focus on maintaining the correctness of the system aggregate and accuracy of node

estimates, during node failures.
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Now we describe the aggregation protocols that deal with node failures and

cleanup and discuss their drawbacks. The aggregation protocol described in [8]

deals only with node failures during initialization stages. It doesn’t deal with node

failures and node churn during the aggregation. In [12], the authors extend the

aggregation protocol from [8] to make it robust against node failures. But the ex-

tended protocol is robust for failures only if nodes who are neighbours do not fail

in short time of each other[8]. In [6], the aggregation protocol is based on epochs,

which are periods during which the gossiping algorithm is executed. In order to deal

with node failures, the protocol is restarted periodically. In [9], failure detection is

not described, but mechanism for removing a failed node’s mass from the system is

described. The drawback being that, it relies on an acyclic graph topology. In [4],

the author describes schemes for failure detection and cleanup, but the performance

of the scheme is observed to be not good.

We introduce a failure detection mechanism and recovery algorithm that doesn’t

depend upon the above constraints and assumptions. Our failure detection mecha-

nism detects node failures at any time during aggregation and is adaptive, so that

the changes in the network is adapted quickly to the computation of the system

aggregate.
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CHAPTER 3

A Robust Protocol for Aggregation

In this chapter, we introduce a robustness protocol for aggregation that detects

node failures during aggregation and performs the necessary cleanup steps.

3.1. System Model

We consider a peer-to-peer network of size N that consists of a large number of

nodes with unique identifiers [6]. The nodes of the network communicate with each

other through messages. The nodes are arranged in an unstructured peer-to-peer

overlay. Each node knows only a subset of the nodes in the system. This subset

of nodes that are known to each node forms the neighbourhood of that node. We

assume that the overlay network can change dynamically.

The network is highly dynamic, subject to sudden departure of nodes (failures)

or voluntary departure of nodes, arrival of new nodes to the network, message delays,

message losses and communication link failures. Each node has a local clock associ-

ated with it. Also, each node has a value associated with it called the contribution

of the node, which is denoted by xi. The estimate of node i at an instance is denoted

by xi . The contributions of the nodes may change at runtime.

3.2. Protocol Hierarchy for Aggregation

One of our contributions is the introduction of a protocol hierarchy for gossip-

based aggregation in peer-to-peer networks. The protocol hierarchy consists of the

following protocols :
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APPLICATION

Aggregation
  Protocol

Robustness
   Protocol

Membership 
Management 

Protocol

Figure 3.1. Protocol hierarchy for gossip-based aggregation

(1) Aggregation Protocol : The basic protocol executed by each node in the

network resulting in the decentralized aggregation of node contributions.

(2) Membership Management Protocol : The protocol responsible for construct-

ing the unstructured peer-to-peer network overlay required by the aggrega-

tion protocol.

(3) Robustness Protocol : The protocol responsible for detecting node failures

and taking corrective actions to repair the corresponding aggregation errors.

3.2.1. Aggregation Protocol

The basic aggregation protocol that we have used for our work is from [4], which

is a modified version of the protocol proposed in [6]. It is designed to adapt to

asynchronous settings and deal with graceful departure of nodes and contribution

updates. The algorithm is described in Figure 3.2. The aggregation protocol is

based on a push-pull scheme. The protocol proceeds in rounds, which are periods of

time when the information exchange is performed. In each round, the nodes invoke

the function NextCycle() and choose a random peer from their neighbourhood set

using the function getNeighbour(). The node gossips its local aggregate with the

neighbour and recomputes its local aggregate when it receives a value from its peer.
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3.2.2. Membership Management Protocol

Membership management protocols are responsible for constructing and main-

taining the overlay network. It provides the service of providing neighbours to the

aggregation protocol layer. For our experiments, we used Cyclon which is a gossip-

based membership management protocol that is highly resilient to node failures[11].

Through a gossip-based enhanced shuffling method, Cyclon provides a continuosly

changing set of peers for each node in the network. This results in faster propogation

of the node contributions throughout the network, resulting in faster aggregation of

node contributions towards the system aggregate.

function NextCycle(i)
p = GetNeighbour(i)
REQUEST(p, xi, i)

end function

function REQUEST(i, val, p)
RESPONSE(p, xi, val, i)

xi = xi+val
2

end function

function RESPONSE(i, val, sval, p)
if val = sval then

xi = xi+val
2

else
xi = val−sval

2
end if

end function

Figure 3.2. A gossip-based aggregation protocol [4]

3.2.3. Robustness Protocol

Aggregation in dynamic networks has to deal with node churn and node failures.

The robustness protocol aims at maintaining the correctness of the system aggregate

under these dynamicities. Our work aims at developing a robustness protocol that

can detect node failures and perform necessary cleanup operations during aggregation
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in a peer-to-peer network so as to ensure the correctness of the system aggregate and

thereby maintain the accuracy of the node estimates.

3.3. Overview of the Robustness protocol

3.3.1. The Protocol

Our robustness protocol includes

(1) Failure detection

(2) Failure cleanup algorithm

3.3.2. Characteristics

Since we aim at maintaining the correctness of the system aggregate, the robust-

ness protocol for aggregation should satisfy the following requirements.

(1) The failure or departure of a node should be detected by at least one node.

(2) The removal of the failed node’s contribution should be performed only once.

(3) False positives in failure detection should be avoided.

The robustness protocol is explained in the following sections.

3.4. Failure Detection

We have used K-failure detectors [5] for failure detection during aggregation in

dynamic peer-to-peer networks. The basic working of K-failure detectors is as follows.

Each node in the network is monitored by one or more other nodes. Every monitored

node periodically sends a message called heartbeat message to the monitoring nodes.

Based on the delay in the arrival of the heartbeat messages from the monitored node,

the monitoring node computes a real value called the ‘suspicion value’. The suspicion

value of a monitoring node q about a monitored node p expresses the confidence that

q has about whether p has failed.
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We chose K-failure detectors due to the following reasons. Firstly, since we focus

on maintaining the correctness of the system aggregate, we aim at conservative fail-

ure detection that aims at reducing wrong suspicions at the cost of an increase in the

failure detection time. K-failure detectors are adapted for conservative failure de-

tection since they take into account the correlation of messages. Secondly, K-failure

detectors are adaptive as the failure detection mechanism considers the changing

network conditions. Thirdly, K-failure detectors are a type of accrual failure detec-

tors. While traditional failure detectors give a binary output, which outputs if the

node is trusted or suspected, accrual failure detectors output a real value for each

node, which provides an estimate of the level of suspicion about the failure of a node.

Hence, in case of accrual failure detectors, the interpretation of data is done by the

applications. This enables different applications to interpret the output from failure

detector according to their quality of service requirements.

In [2], the authors have extended the K-failure detectors to include clustering

of nodes where the suspicion values are gossiped within nodes in a cluster, so as to

improve the confidence that a node has about another node’s failure. We combine

the ideas from [5] and [2] to introduce a failure detector for aggregation in dynamic

peer-to-peer networks.

In the following sections, we discuss the different phases involved in failure de-

tection.

3.4.1. Grouping of nodes

The nodes in the network are arranged into different groups of size g. The nodes

within a group are responsible for monitoring each other. The group size should

be big enough so that node failures do not cause the group to collapse thereby

affecting the detection and small enough such that the message complexity (number

of messages and size of data in a message) is low. The strategy for grouping can be

decided by the peer-to-peer application. Possible strategies are grouping those nodes

that are close to each other, or those which are within the same network.
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3.4.2. Sending heartbeat messages

Every theartbeat time units, every node i sends heartbeat messages to all other

nodes in its group. The heartbeat message consists of the following fields:

• Node id - Identifier of node i

• Node contribution - The contribution of node i

• Node estimate - The current estimate of the node i

• Version - The version of the node’s estimate

• Suspicion value - The suspicion value that the node i has computed for other

nodes of the group. The computation of suspicion value is explained in the

next section.

3.4.3. Computing suspicion value

When a node receives a heartbeat message from a node, it stores the information

received from the message and also stores the time of arrival of the heartbeat. This

is used to compute and store the interarrival times of heartbeats from every other

node in the group in a window of size w. Table 3.1 shows the information stored by

each node about other nodes in the group.

Every tcompute time units, each node computes the suspicion value for every other

node in the group. For this, the mean interarrival time of heartbeats for every node

in the group is calculated using the recent w interarrival times of heartbeats of that

node. Since we take the recent w interarrival times, the changing network conditions

are considered in failure detection. Using the mean interarrival time of heartbeats

of a node, the number of expected but not-yet-received heartbeats from that node

by the current time is calculated. This is done for every node by adding the mean

interarrival time of heartbeats of the node to the arrival time of the latest heartbeat

from that node.

Each of these not-yet-received heartbeats contributes to the suspicion value. The

contribution of the these not-yet-received heartbeats is calculated using a contribu-

tion function. The contribution function is a function of the delay in the arrival of

the heartbeat. It provides a real value between 0 and 1.
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Variable Description Fields

Group

The list of nodes
in the group

{ nodeid, nodeestimate, nodecontribution, ver-
sion, state, interarrivaltime, lasthbeat, suspval-
List }

nodeid - Identifier of the node

nodeestimate - Current estimate of the node

nodecontribution - Contribution of the node

version - Version of estimate of the node

state - State of the node (ALIVE, DEADFIRST,
DEAD)

interarrivaltime - Interarrival time of heartbeats
from the node

lasthbeat - Arrival time of the last heartbeat
from the node

suspvalList - List of suspicion values
computed by the node and consists of
{nodeid, suspicionvalue}

where nodeid - Identifier of the node and

suspicionvalue - Suspicion value computed
about the node

Table 3.1. Information stored by each node

The contribution function that we use is :

f(t) =
t

t+ 2
(3.1)

where t = (current time - expected time of arrival of the heartbeat).

Figure 3.4 depicts the contribution function. The suspicion value of a node is cal-

culated as the sum of contributions of all expected heartbeats. The suspicion value

calculated using the contribution function is gossiped to all the other nodes in the

group by including it in the heartbeat messages. Hence, each node would have the

suspicion value that it computed about every other node in the group and also the

suspicion values computed by other nodes about every other node in the group.
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Figure 3.3. Contribution function for expected but unarrived heartbeats

For example, consider that node A is computing the suspicion value for node B.

Suppose,

The mean of the interarrival times = 30 seconds
The time when the last heartbeat from B arrived = 200th second
Current time = 280th second

200 230 260 280

Last heartbeat
arrival time

Current 
  time

Mean of interarrival times=30

Time ->

h1 h2

Figure 3.4. Example of suspicion value computation

The heartbeats are expected to arrive at time = 230, 260
Delay in the arrival of the heartbeats = (280-230), (280-260)

= 50, 20
Suspicion value = f(50) + f(20)

= 0.961 + 0.909
= 1.87
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3.4.4. Detecting failures

Applications set a threshold for the suspicion value. Every tcleanup interval, every

node i checks the suspicion value that it has computed for each of the other node

j and also the suspicion value that it has obtained from other nodes about node j.

If all these values has exceeded the threshold set by the application, then node j is

declared dead. More about setting the suspicion threshold is discussed in chapter 4.

3.5. Failure Cleanup Algorithm

Once a node failure has been detected, the contribution of that node has to

be removed. Also, as a result of gossiping with other nodes, the node would have

accumulated some mass from the system. Hence, the cleanup after detection of a

node failure would involve the removal of the contribution of that node and restoring

the mass that it has taken from the system.

Maintaining the correctness of the system aggregate means conserving the system

mass, which is the sum of the contributions of all the nodes.

Let Sa be the sum of the contributions of the nodes 1,2,...,N.

Sa = x1 + x2 + ....+ xN (3.2)

After some rounds of gossiping, the node estimates change to xi. Since the system

mass is conserved,

x1 + x2 + ..+ xi + ..+ xN = Sa (3.3)

Suppose that node i has failed. So the sum of the estimates of the nodes in the

sytem would be Sb given by,

Sb = x1 + x2 + ..+ xi−1 + xi+1 + ..+ xN = Sa − xi (3.4)

Since node i has failed, the new sum should be Sc given by,

Sc = Sa − xi = x1 + x2 + ..+ xi−1 + xi+1 + ..+ xN (3.5)
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We need to obtain Sc from Sb. Subtracting 3.4 from 3.5,

Sc − Sb = −xi + xi

Sc = Sb + xi − xi (3.6)

Hence, if a node i has failed, then the cleanup would involve adding (xi − xi) to

the system mass. In order to maintain the accuracy of the aggregate values :

• The failure cleanup for a node should be performed exactly once.

• The failure cleanup should be done with latest version of that node’s esti-

mate.

It may happen that the failure of a node is detected by more than one node.

Inorder to remove the conflict, we assume that all nodes have unique identifiers and

the algorithm makes sure that among the nodes which detect the failure, the node

with the least id is responsible for performing the cleanup steps.

The failure cleanup algorithm is described in Algorithm 3.5. Initially, the state

of all the nodes monitored by a node is set to ALIV E. When a node i detects

that node j has failed, it invokes the function Cleanup(). It performs the cleanup

steps specified above. It changes the state of the node j to DEADFIRST , which

means that node j has failed and node i has performed the cleanup steps for it. It

then informs all nodes k in the group about the death of node j by sending message

DEAD(k, j, version(j), i).

When a node i receives a DEAD message from node k about the death of node

j, it checks if the cleanup performed by node k is with the latest version of estimate

of node j. If i has a later version, then it sends that to node k through an UNDO

message. Next, if this is the first information that node i gets regarding the death

of node j, it changes the state of node j to DEAD. Else, if node i already had

known about the death of node j and if it has already performed the cleanup, then it

compares its id with the id of node k. If node k has a lesser id than itself, it undoes

the cleanup steps and changes the state of node j to DEAD.
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When a node i receives an UNDO message, it checks if the version with which it

performed cleanup is an earlier version than the version it has received through the

UNDO message. If so, it undoes the cleanup steps with earlier version and performs

the cleanup with the newer version. The worst-case message complexity for detecting

a node failure, with a group size ‘g’ is O(g2).
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function CleanUp(i, j)
Choose node deadnode from Group such that nodeid(deadnode) = j
xi = xi + nodeestimate(deadnode)− nodecontribution(deadnode)
state(deadnode) = DEADFIRST
for all node k ∈ Group do

DEAD(k, j, version(j), i)
end for

end function

function DEAD(i, j, version, k)
Choose node deadnode from Group such that nodeid(deadnode) = j
if version(deadnode) > version then

UNDO(k, j, version(deadnode), nodeestimate(deadnode), i)
end if
if state(deadnode) = ALIV E then

state(deadnode) = DEAD
else if state(deadnode) = DEADFIRST then

if i > k then
xi = xi − nodeestimate(deadnode) + nodecontribution(deadnode)
state(deadnode) = DEAD

end if
end if

end function

function UNDO(i, j, version, value, k)
if state = DEADFIRST then

Choose node deadnode from Group such that nodeid(deadnode) = j
if version(deadnode) < version then

xi = xi − nodeestimate(deadnode) + value
version(deadnode) = version
nodeestimate(deadnode) = value

end if
end if

end function

Figure 3.5. Failure Cleanup Algorithm
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CHAPTER 4

Evaluation

We performed simulations using PeerEmu, which is a customized version of Peer-

Sim [1], that is exclusively event-driven.

We used the Cyclon protocol [11] for the creation and maintenance of the overlay

network. The default contributions of the nodes used for the simulations are chosen

from a uniform distribution, where an integer value is chosen randomly from the range

0 to (220 − 1). For simulations that compare different initial value distributions we

have used the following distributions:

• Uniform distribution, where an integer value is chosen randomly from the

range 0 to (220 − 1)

• Poisson distribution with λ=1000

• Non-uniform distribution, where a value is chosen from the range 0 to 5000

with 0.2 probability and from the range 100000 and 105000 with 0.8 proba-

bility

In order to simulate the delay in messages, a trace of message delays from the

real world was used. For each pair of nodes, a value from this trace is chosen and

used to simulate the delay in the delivery of messages between them.

The default values for parameters are :

• Group size of nodes = 8

• Suspicion threshold = 1

• 1 aggregation round = 1 second

• Robustness protocol execution round = 0.5 × aggregation round = 500 ms

• Percentage of message loss = 20
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• Period of sending heartbeats (theartbeat) = 0.5 × aggregation round = 500

ms

• Period of calculating suspicion values (tcompute) = 0.5 × aggregation round

= 500 ms

• Period for checking for failed nodes (tcleanup) = 0.5 × aggregation round =

500 ms

Grouping of nodes was performed using a simple round-robin strategy. Node with

identifier i was assigned the group (i%N) where N is the network size. To simulate

node churn, x% of nodes were added and removed from the system every aggregation

round.

4.1. Evaluation Metrics

The following are the metrics that we have used for the evaluation.

(1) The standard deviation of the node estimates are plotted against time/rounds.

The standard deviation describes the spread of the node estimates from their

average. Hence, the lesser the standard deviation, the lesser are the spread

of the node estimates from their average, which means they are closer to

their average.

(2) Convergence ratio is defined as the ratio of the variance of node estimates in

the current aggregation round to the variance of node estimates in the pre-

vious aggregation round. Convergence ratio is plotted against time/rounds.

Since, the variance of the node estimates gives an indication of the spread of

the node estimates from their average, the ratio of consecutive variances of

node estimates gives an indication of the rate of convergence, which is the

rate at which the node estimates reach the system average.

(3) We define the span of a set of values as the difference between the maxi-

mum and minimum of the values. The converging round is the round when

the value span of the node estimates reach a threshold times the span of

the initial node contributions. The threshold used for our experiments is

(1/million). The converging round gives an indication about how long it

takes for the nodes to converge towards the average.
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4.2. Stable Peer-to-Peer Networks

Here we describe the performance of the aggregation protocol in stable peer-to-

peer networks.

In Figure 4.1, we have plotted the standard deviation of the node estimates

against rounds, for varying network sizes. We observe that the standard deviation of

the node estimates decreases uniformly with time, indicating that the node estimates

become closer to the average with gossiping.
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Figure 4.1. Standard deviation of node estimates vs time for varying

network sizes

In Figure 4.2, we have plotted the convergence ratio against rounds for varying

network sizes. We observe that the rate of convergence of node estimates is almost

constant and doesn’t depend on the network size.
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Figure 4.2. Convergence ratio vs time for varying network sizes
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Figure 4.3. Convergence ratio vs time for varying initial value distributions
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In Figure 4.3, we have plotted the convergence ratio for varying initial value

distributions. We observe that the rate of convergence of node estimates is similar

for various initial value distributions.
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Figure 4.4. Converging round for varying network sizes and varying

initial value distributions

In Figure 4.4, the converging round for various network sizes and initial value

distributions is plotted, and we see that the convergence is independent of network

size and initial value distributions.

From our evaluations, we conclude that the convergence of node estimates towards

the system average in a stable peer-to-peer network is independent of the network

size and the initial value distributions.

4.3. Dynamic Peer-to-Peer Networks

In order to study the effect of node failures and node churn on aggregation, we

performed two sets of experiments.
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• A percentage of nodes are removed from the network after the nodes have

converged to the system average.

• In each aggregation round, x% of node churn is simulated.

In Figure 4.5, the convergence ratio for a stable network of size 8000 and for a net-

work with churn of 0.001% and 0.0005% is shown. We observe that the convergence

ratio constantly changes during churn.
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Figure 4.5. Convergence ratio with and without churn for a network

size of 8000
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Figure 4.6. Standard deviation of node estimates with and without

churn for a network size of 8000

In Figure 4.6, the standard deviation of node estimates for a stable network and

for a network with churn is shown. The standard deviation of node estimates for a

stable network decreases with time and stays constant, showing the convergence of

the node estimates towards the system aggregate. The standard deviation of node

estimates in a network with churn, doesn’t decrease, but remains almost the same

throughout, showing the existence of error of the node estimates from the system

average and hence, the lack of convergence of the node estimates to the system

average.

4.4. Failure Detection

In this section, we analyze three characteristics of our robustness protocol.

• Failure detection time which is the time taken to detect the node failures.

• Number of false positives, which is the number of wrong failure detections.

• Performance of the failure detection and failure cleanup algorithm given by

the error of the converged average from the true system average.
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4.4.1. Failure Detection Time
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Figure 4.7. Standard deviation of node estimates for varying net-

work sizes, when 10% of nodes are removed after convergence

In Figure 4.7, the standard deviation of node estimates are plotted, when 10% of

nodes are removed after convergence. The plot for different network sizes is shown.

The transition of the standard deviation to a higher value shows the time when the

failure of nodes is detected. In Figure 4.7, the transition happens at the same time

irrespectively of the network size, which means that the failure detection time doesn’t

depend upon the network size.

In Figure 4.8, the standard deviation of node estimates for a network of size 8000

is plotted, when varying percentage of nodes are removed after convergence. From

Figure 4.8, we observe that the transitions of the standard deviations from lower

to higher value occurs at the same time, irrespectively of the percentage of nodes

removed. This shows that the failure detection time is unaffected by the number of

nodes removed.
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centage of nodes are removed after convergence for a network size of

8000
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In Figure 4.9, the standard deviation of node estimates are plotted for a network

of size 8000, for varying suspicion thresholds, when 10% of nodes are removed after

convergence. From Figure 4.9, we observe that the lower the suspicion threshold,

the quicker the failure detection. Hence, we conclude that the failure detection time

depends upon the suspicion threshold.

4.4.2. False positives
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Figure 4.10. Suspicion value distribution for varying message losses,

group size=8

In Figure 4.10, the suspicion value distribution for a network of size 8000 is

plotted, with a group size of 8. The suspicion value of all the nodes for a period of

5000 rounds is used for the plot. Here, we observe that higher the suspicion threshold,

lesser the number of false positives. For example, if the suspicion threshold is set

to 1 for a network with message loss 1%, then the percentage of false positives is

1.6× 10−6. While when the suspicion threshold is set to 0.5, the percentage of false

positives is 4.8× 10−6. Also, we observe that the suspicion value for a network with

higher message loss spans a broader range compared to a network with lower message

loss. For instance, the percentage of false positives when the suspicion threshold is

set to 1 is 1.6×10−6 for a network with message loss 1% while compared to 2.1×10−5
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for a network with message loss 10%. Hence, the suspicion threshold for a network

with lower message loss can be lower than that of a network with higher message

loss.

4.4.3. Performance of failure detection and cleanup
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Figure 4.11. The error of converged average from true system av-

erage, when varying percentage of nodes are killed after convergence,

group size=8

In Figure 4.11, we compute the difference of the converged average from true

system average, when varying percentage of nodes are killed after convergence for a

network size of 8000 and group size 8. For each set, we performed 100 experiments.

Firstly, we observe that, in the worst case when half of the nodes are killed, the error

observed is as low as 0.0028, while when lesser number of nodes are killed, the error

is even lower, for 10% node failures, the error is 0.0007. Here, we observe that when

the percentage of nodes killed are more, the error is more. This is because when

more number of nodes are killed, a group itself can collapse and hence the failure

cleanup for those nodes is not performed, leading to errors.
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Figure 4.12. The error of converged average from true system aver-

age, when 25% of nodes are killed after convergence, for different group

sizes

In Figure 4.12, the difference of the converged average from true system average

is plotted for varying group sizes, when 25% of nodes are killed after convergence.

For each group size, we performed 100 experiments. We observe that for group size

3, the error can reach a higher value than for group sizes 8 and 12. This is because

when a large number of nodes of the network, it may happen that all the nodes of

a group of smaller size is killed. This leads to lack of failure cleanup and error in

converged average.

4.5. Inferences

In case of stable peer-to-peer networks, the convergence of the node estimates

towards the system average is unaffected by the network size or the initial value

distribution. For dynamic peer-to-peer networks with node failures and node churn,

the convergence is affected by the percentage of node churn, which is the percentage

34



of nodes added and removed from the system. There is a percentage of error that

exists in the system in case of node churn and hence the convergence of the node

estimates towards the system average is hindered due to node churn.

Regarding the performance of the failure detection algorithm, we saw that the

failure detection time is unaffected by the network size and the number of nodes

failed. The failure detection time depends upon the suspicion threshold. The lesser

the suspicion threshold, faster the node failures can be detected. But, in that case,

the number of false positives can increase. Hence, there is a tradeoff between the

failure detection time and the number of false positives. The application should

decide the suspicion threshold, according to its quality of service requirements like,

the failure detection time and the percentage of false positives acceptable. Also, the

suspicion value distribution depends upon the message loss in the network and the

group size, and hence the suspicion threshold should be determined according to the

nature of the network.

In addition, we saw that the correctness of the system average is affected when

the number of nodes failed is more. A smaller group leads to more errors, due to the

chance of the collapse of the group as a whole.
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CHAPTER 5

Confidence Value

In this chapter, we answer the following questions :

• What are the factors that determine the accuracy of the node estimate?

• How can the accuracy of the node estimate be determined?

As aggregation progresses, the node estimates of the different nodes change. The

node estimates also change when interacting with newly arrived nodes and when

failure cleanup is performed. The changes in node estimates affect the accuracy of

the node estimate, which is defined as the difference of the node estimate from the

system average. Our goal was to explore the factors that affect the accuracy of node

estimates and to determine the accuracy of the node estimates during aggregation.

5.1. Observations and Inferences

From the evaluations described in the previous chapter, we have seen that in

stable peer-to-peer networks, the rate of convergence of node estimates is unaffected

by the network size and initial value distribution. The decrease in the standard

deviation shows the decrease in the error of the node estimates from the average.

Hence, the more the nodes gossip, the lesser their error from average and hence, more

accurate the values become. But in cases of node churn, we have observed that the

standard deviation of values doesn’t decrease uniformly. These observations lead us

to the inference that the accuracy of node estimate depends upon how long the node

has gossiped and also on whom it has gossiped to.
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5.2. Confidence Value

The above inferences led us to define a metric which we call the ‘confidence value’

which gives an indication of the accuracy of the node estimate. The confidence value

is calculated using the algorithm presented in 5.1. A node i which has just joined the

system has a confidence value of 0 (Join(i)). When a node i gossips with another

node j (Gossip(i, j)) having a confidence value that is greater than or equal to its

confidence value, then the confidence value of the node increments by 1. When a

node i gossips with node j with lesser confidence value, then the confidence value

of node i becomes confidence value of node j incremented by one. During failure

cleanups (Cleanup(i)) and contribution updates (ContributionUpdate(i)), the con-

fidence value of node i becomes zero.

function Join(i)
confidence(i) = 0

end function

function Gossip(i, j)
if confidence(i) ≤ confidence(j) then

confidence(i) = confidence(i) + 1
else

confidence(i) = confidence(j) + 1
end if

end function

function ContributionUpdate(i)
confidence(i) = 0

end function

function Cleanup(i)
confidence(i) = 0

end function

Figure 5.1. Algorithm to compute confidence value
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5.3. Evaluations

Here we show the evaluations performed using confidence value. In Figure 5.2,

the percentage error of the node estimates from the system average is plotted against

confidence value for network size of 1000 and 8000. We observe that with each confi-

dence value, a range of percentage error of node estimates is associated. The higher

the confidence value, the lesser the percentage error of node estimates. In addition,

the relationship between percentage error and confidence value is independent of the

network size.

Figure 5.2. Percentage error of node estimates from system average

vs confidence value for varying network sizes
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Figure 5.3. Percentage error of node estimates from system average

vs confidence value for varying initial value distributions

In Figure 5.3, the percentage error of the node estimates from the system average

is plotted against confidence value for a network size of 1000, for uniform distribution

and poisson distribution. We observe that the percentage error of node estimates

corresponding to a confidence value is different for different initial value distributions.

Hence, the relationship between percentage error and confidence value is dependent

on the initial value distribution.

From Figure 5.4 and Figure 5.5, we observe that the relationship between confi-

dence value and the percentage error of node estimates is different for networks with

different churn. Also, we can see that there is an upper limit of confidence value

in each case, which shows the lower bound of percentage error of node estimates.

This shows the error that would exist in a network with a particular value of churn.

Convergence of node estimates beyond this error is not possible.
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Figure 5.4. Percentage error of node estimates from system average

vs confidence value for varying node churn
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5.4. Inferences

For a given network condition, with a specific percentage of node churn and

a specific initial value distribution, the confidence value of a node indicates the

accuracy of the node estimate, that is, the error of the node estimate from the

system average. Also, given a network with a specific percentage of node churn, the

maximum attainable confidence value provides the maximum possible accuracy of

node estimate that can be achieved. This gives a lower bound of the error of node

estimates that exists in the network.

42



CHAPTER 6

Conclusion

We studied the effect of node failures and node churn during aggregation in peer-

to-peer networks. We introduced a robustness protocol that is scalable and adaptive.

Our protocol detects node failures and performs the cleanup steps after node failures,

such that the correctness of the system aggregate is maintained. The failure detec-

tion performs quite well producing an error of converged average as low as 0.0028 for

a network size of 8000. Our failure detection mechanism detects the failure of nodes

at any time during aggregation and reflects the changes in the networks as quickly

as possible, enabling in faster convergence of node contributions towards the system

average. The failure detection mechanism can ensure very low false suspicion rate,

with a tradeoff in the failure detection time. The failure detection time is unaffected

by the network size and the number of nodes failed. The application can set the sus-

picion threshold according to its quality of service requirements, such as the failure

detection time and the number of false suspicions that it allows.

We introduced the confidence value which gives an indication of the accuracy of

the node estimates. The relationship between the confidence value and the accuracy

of the node estimates depends on the node churn in the system and the initial value

distribution. The maximum confidence value that is possible in a particular network

setting, gives an indication of the maximum achievable accuracy of the node esti-

mates in the system.

The future work in this direction would be to introduce a grouping strategy for

grouping the nodes. The strategy should take care of the collapse of node groups due

to failures and create more groups when a group size exceeds the maximum allowed

size. The strategy should provide for the creation, maintenance and restructuring of

node groups. We saw that the error of converged average increases with the number
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of nodes that fail. The more the failed nodes, the more the error. It is expected

that such a strategy would help to keep the error of converged average constant,

irrespectively of the number of nodes that fail and hence improve the performance

of failure detection and cleanup.
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