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Abstract

To provide a resource allocation mechanism for private cloud infras-
tructure that can respond to the varying application resource demands
as well as efficiently utilize the limited resource pool of the infrastruc-
ture is a challenge. The common models for managing cloud resources
are on-demand resource provisioning and static allocation mechanisms.
While the limited capacity of a private cloud makes the former model un-
suitable for managing resources, the static allocation model suffers from
the lack of adaptation to the time-varying application requirements and
the environment’s dynamicity. In this report, we propose a dynamic re-
source manager for private cloud platforms that is based on an economic
proportional-share allocation scheme. In this model, the user communi-
cates to the resource manager the value he is willing to spend for resources
to run his applications. The resource manager allocates resources to all the
applications proportional to their valuation, and inversely proportional to
the resource price. The user can change the spending rate during the
application runtime to take into account the changing resource require-
ments and also the contention state of the system. Due to its dynamic
nature, this mechanism provides service differentiation to applications in
contention periods, while maximizing the infrastructure resource utiliza-
tion. We have implemented the resource manager in Python and inte-
grated it with OpenNebula. Our evaluations show that our proportional
share resource manager is able to perform fine grained resource alloca-
tion and provide better service to the applications paying more during
contention periods.
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1 Introduction

Cloud computing takes advantage of virtualization technologies to provide
an on-demand resource provisioning model [6]. By using this model, users
can provision (i.e., acquire and release) a dynamic number of virtual re-
sources (i.e., virtual machine instances) anytime during their application
execution based on their actual needs and for as long as they need them.
Also, through the use of virtualization technologies, the applications ex-
ecuted by users can be isolated between each other and the resources
allocated to each application can be tuned in a fine-grain manner during
the application runtime. These capabilities, together with the possibility
to transparently live migrate the applications between physical machines,
can be used to reduce the resource fragmentation and improve the total
infrastructure utilization. These benefits have encouraged the rapid adop-
tion of the Infrastructure as a Service (IaaS) paradigm and as a follow-up
a variety of cloud managers were designed to facilitate the lease and use
of infrastructure resources.

Applying this on-demand provisioning model for private cloud infras-
tructures leads to the difficulty of managing a limited resource pool that
needs to be shared between multiple competitive users. These users can
execute different application types (e.g., malleable, rigid, evolving) while
having different QoS requirements for them (e.g., deadline, throughput,
accuracy). Thus a cloud resource manager needs to deal with the complex-
ity of all these user demands in a scalable and efficient manner. However,
cloud computing toolkits (e.g., OpenNebula [I], Eucalyptus [2]), used to
manage private cloud infrastructures, rely on simple FCFS policies to al-
locate available resources to virtual machines. These resource managers
present two main drawbacks: (i) the resource configuration for each vir-
tual machine is specified by the user at submission time and cannot be
modified during the virtual machine runtime; (ii) the resource manager
does not provide any feedback to users/applications about the resource
availability (i.e., how many resources the application can use) and uti-
lization (i.e., how many resources the application used). In the first case,
to run applications with time-varying per-node resource requirements the
user needs to estimate the application’s peak demand and overprovision
the resources. In the second case, the application cannot change its re-
source demand according to the state of the infrastructure and its QoS
goal, and they are also not given the incentives to do so.

In this report, we propose a cloud resource manager for private infras-
tructures that allocates fractional amounts of resources to applications
dynamically during their runtimes based on a proportional-share auction
that runs periodically. Auctions were seen as an appealing method to
allocate resources to competitive users as they provide a generic way for
the applications to express their truthful valuation for resources to the
resource manager. Each application has a limited budget to spend and
needs to use it wisely to request as many resources as needed. Thus the
resource manager can (re-)allocate the resources to the applications that
need them the most, ensuring that most valuable applications execute
at the right time. We choose the proportional share allocation scheme
because it is simple to implement and scalable. In this scheme, the ap-
plications receive an amount of resources proportional to what they are
willing to pay for and inversely proportional with the resource price. This



ensures that the resource is shared between all applications rather than a
subset and it avoids starvation. We implemented the resource manager in
Python and integrated it with OpenNebula. To our knowledge this is the
first implementation of a dynamic proportional-share allocation mecha-
nism for cloud infrastructures. Our evaluations show that this mechanism
is able to provide differentiation between applications in contention peri-
ods.

This report is structured as follows. Section 2 describes the back-
ground and motivation for our work. The proposed proportional share
strategy is described in Section 3 and Section 4 gives an overview of our
implementation. We present the evaluation of this algorithm in Section 5
and the future directions and conclusions in Section 6.

2 Background

In this section, we introduce the context of our work. Then we present the
drawbacks of current cloud resource allocation mechanisms and we give
an overview of existing allocation schemes that could overcome them.

2.1 Context

Our system is intended for a private cloud infrastructure provider who
wants to provide users with the capability to request resources for their
applications dynamically during the application runtime. As compared to
public clouds, private clouds have a limited resource capacity. The appli-
cations to be run can be of any type: rigid or elastic. Rigid applications
are composed of a fixed number of virtual machines (VMs), determined by
the user at application submission time. Elastic applications can change
the number of VMs during their execution according to their computa-
tional requirements.

A central resource manager manages all the cloud resources and pro-
vides an interface to applications to provision VMs dynamically during
their runtime and to partition resources in a fine-grained manner between
applications. These allocations are enforced physically by a hypervisor
running on each node (e.g., Xen). In this work we focus on implement-
ing the resource allocation scheme used by the cloud resource manager.
We target only homogeneous multi-core infrastructures and CPU resource
allocation.

2.2 Motivation

The common way to manage cluster resources is through the use of batch
schedulers. This mechanism provides users with a "job" abstraction: to
run its applications, the user specifies the number of required resources,
the execution duration and submits it to the scheduler queue. When
enough resources become available, the scheduler allocates the requested
amount of resources to the application and starts it. This model not
only leads to severe resource underutilization but it also provides poor
QoS guarantees to applications. As users are not allowed to change the
number of resources during application runtime, they cannot react to
unpredictable events (i.e., node failures) and they need to overprovision



resources to meet application peak demands.

These drawbacks of static resource allocation were overcome by the
dynamic provisioning model introduced by cloud computing [6]. This
model allows users to "rent" virtual resources "on-demand" and scale the
amount of resources according to their need. This model is attractive
to use because it allows applications to optimize their resource alloca-
tion according to their need while improving the resource utilization of
the infrastructure. At the same time, to use resources more efficiently,
fine-grained allocation can be used [I2]. With this model, the provider
allocates fractional amounts of resources to applications, improving the
infrastructure utilization and allowing applications that require a fixed
set of processors to begin their execution sooner. However, these systems
lack the capability to provide appropriate QoS guarantees to applications
and to differentiate between the different priorities of user requests.

To illustrate these drawbacks, we consider the case of a user who wants
to execute an elastic application, composed of a large number of indepen-
dent tasks, on the cloud infrastructure without any special QoS require-
ment. This type is representative for data mining and semi-interactive
processing applications, composed of a large number of tasks with rel-
atively small execution times [3]. The desired behavior of the resource
manager would be the following. During contention periods, the resource
manager should "force" the elastic application to decrease its resource
requirements letting an urgent application (e.g., a weather forecast sim-
ulation) to ask as many resources as needed and when needed. When
the infrastructure is underutilized the same application should be offered
more resources to have a better performance. However, common cloud
resource managers (e.g., OpenNebula) are not capable of enforcing this
behavior, leading to poor resource utilization and poor QoS support for
the applications in need. For example, the OpenNebula scheduler relies on
a first come first serve(FCFS) match-making policy to allocate resources
and place the VMs on the nodes.

2.3 Resource Allocation Schemes

To solve the previously mentioned problem, the resource manager needs
to know enough information about the applications running on the infras-
tructure (i.e., their resource demand and how much they value their QoS
requirement). A generic way to achieve this is through two mechanisms:
(i) sending the utility functions [9] of the applications to the resource
manager; (ii) using a virtual economy to trade resources [13].

Utility functions map the current state of each application (workload,
resource capacity, service level agreement) to a scalar value that quantifies
the "satisfaction" of each application with regard to its performance goal.
By knowing the utility functions from all applications currently running
on the infrastructure, the resource manager computes an optimal alloca-
tion (e.g., maximizes the sum of all utilities or follows a max-min fairness
criteria). However, this method is computationally expensive and coop-
erative. Users can cheat about their utilities to gain a better allocation.

Using a virtual economy to share resources between competitive users
provides them with the right incentives to prioritize between their re-



quests. Using auctions to trade resources provides a fast and efficient way
to allocate resources to users that need them the most. For example,
Amazon Spot instances [4] became a popular provisioning model "that
allows customers to bid on unused Amazon EC2 capacity and run those
instances for as long as their bid exceeds the current Spot Price. The Spot
Price changes periodically based on supply and demand, and customers
whose bids exceeds it gain access to the available Spot Instances." This al-
lows the provider to sell its unused resources at a small price and improve
its resource utilization. In the same time, when the demand becomes too
high, only users that pay more manage to keep their desired allocations.

The simplest auction model is the proportional-share model. This type
of auction allows a fine-grained allocation model at a low computational
cost. With this model, the scheduler makes more efficient decissions about
which applications should get the resources and which not and it also pro-
vides users with the tool to optimize their allocations according to their
application importance [7]. In our work, we have used the proportional-
share model for resource allocation to applications in private clouds.

Recent works used proportional share auction to allocate resources in
distributed systems [11]|8]. In [11]], the authors present "a Dynamic Prior-
ity (DP) parallel task scheduler for Hadoop clusters which allows users to
control their allocated capacity by changing the amount they are willing
to spend over time." Users specify an amount they are willing to pay per
time period (i.e. bid) for the execution of their tasks and the scheduler
allocates to them a number of slots proportional to their bid. In [8] the
proportional-share is applied per physical machine while agents bid on
different machines to optimize the global allocation of the user.

Opposed to these works, we implement the proportional-share auction
for allocating fractions of resources to virtual machines (VMs) in a private
cloud while minimizing the number of migrations.

3 Scheduling algorithm

We designed a resource manager that uses a fine-grained dynamic schedul-
ing model based on proportional-share auction for multi-core infrastruc-
tures. The main functionalities of the resource manager are : (i) it com-
putes the amount of resources that each VM should get by applying a
proportional-share auction on each host such that each VM receives a
maximum share according to its spending rate. (ii) it computes the map-
ping for these vms to physical hosts so as to minimize the migrations from
previous configuration.

We describe these operations in the rest of this section. For this,
we first define the terms that will be used and then we introduce the
proportional share auction scheme. Finally, we detail the steps taken by
our algorithm.

3.1 Definitions

The proportional-share resource manager runs a resource allocation and
load balancing algorithm at a predefined time period, i.e., scheduling
interval. In our system, users are provided with an amount of virtual



currency allocated by the administrator, i.e., budget. The budget given
to each user depends on the policy adopted by the system. The users
specify an amount from this budget to the resource manager, a spending
rate, that represents how much the user wants to spend for each resource
unit consumed by their applications during a scheduling interval. The
spending rates are used to calculate the amount of resources that is allo-
cated to each application. Each spending rate can be changed during the
application runtime, more precisely, during each scheduling interval.

3.2 Proportional-Share Resource Allocation Scheme

We consider a cloud infrastructure composed of N nodes with a total ca-
pacity of C and a set of 1...n applications. The resources can be CPU
capacity, memory, etc. Each application 7 requires NV M; virtual ma-
chines with VC PU; cores each, for which it is willing to pay at a spending
rate of SR;. The resource allocation is done on each node according to a
proportional-share mechanism. That is, a virtual machine receives a CPU

share = % where the resource price is P = ¥, SR;. If each VM
of an application ¢ consumes an amount U; of CPU, the cost charged for

each application per time period is: SR; - E]kV:VlMi Ui.

This scheme avoids starvation since in each scheduling interval every
application receives a portion of the cloud capacity. Since the users are
charged with the amount of resources they have used, this gives them
incentives to submit a spending rate that reflects the value they have for
their applications. Rich users will pay more to have their application
executed before a deadline, while poor users will put a low spending rate
and use the resources only in low utilization periods.

3.3 A Proportional-share Algorithm for Cloud VM
Allocation

The proportional share scheme calculates the proportion of resources that
each VM of each application should receive, with respect to the total ca-
pacity of the cloud infrastructure. It can happen that the proportions
estimated from the proportional-share scheme for the VMs of some appli-
cations with high spending rate may exceed the capacity of a node. Thus,
we propose an algorithm that applies the proportional-share auction on
each node of the cloud while ensuring that each VM receives the best
share according to its spending rate.

We describe our algorithm next. Table [T summarizes the data struc-
tures used for the algorithm. The algorithm is structured in three phases:
(i) VM grouping; (ii) VCPU allocation; (iii) VM placement. The first
phase groups the VMs in logical groups, each with a capacity of a phys-
ical node. A VM group consists of those VMs that are to be placed on
the same physical node. The second phase assigns the VM VCPUs to
the physical cores and computes the allocation for each of them. The
last phase computes the mapping of the logical groups to the physical
nodes by executing a migration plan that minimizes the number of VM
migrations required and also computes the resource share of each VM ac-
cording to the proportional share strategy. These phases are executed at
the beginning of each scheduling interval.



Variable Description Fields

NodeList The list of nodes {nodeid, capacity}

VM List The list of VM’s | {vmid, spendingrate, nvcpu, share}
with their descriptive
fields
The list of VM | {vmlist, groupprice,vcpucorelist}
groups. A VM

group consists of
those VMs which are
VMGroupList | placed on the same
physical node.

vmlist - List of VM’s with their de-
scriptive fields

groupprice - Sum of spending rates
of VM’s in the group, i.e., the group
price

vepucorelist - Stores the assignment
of VCPU’s of each VM to cores and
consists of

{coreid, coreprice, vmid, vepu}
coreid - id of the core

coreprice - price of the core

vmid - id of the VM

vepu - vepu id of the vepu

Table 1: The data structures used by the proportional share algorithm

Input: VM List,V MGroupList

Sort VMList in descending order based on the VMs spending rate ;

foreach group g € VM GroupList do

‘ g.groupprice =0 ;

end

foreach VM v € VM List do
Select group g € VMGroupList with the minimum price ;
g.vmlist = g.vmlist Uv ;
g.groupprice = g.groupprice + v.spendingrate ;

end

© 0N oA W N

Figure 1: Phase 1 of the algorithm

VM Grouping Figure [1] describes the first phase of the algorithm. In
the first phase, we compute the groups of VMs that are placed on the same
physical machine, according to the proportional share allocation scheme.
This phase takes as an input the list of VMs with their spending rates.
The list is first sorted in descending order of the VM spending rate. Then
for each physical host we initialize a logical group and set its price to 0.
Afterwards, the assignment of VMs to the logical groups takes place: each
VM from the list is assigned to the group with the smallest price. The
price of the chosen group is then incremented with the spending rate of
the VM. These steps are repeated until all VMs are assigned to groups.
The output of this phase is the list of VM groups.




This algorithm allocates the best possible share to each of the VM
according to its spending rate, as shown in [10, page 524, theorem 20.6].

Data: VM List,V MGroupList
foreach group g € VM GroupList do
‘ Sort g.vmlist in descending order based on the VMs spending rate ;
end
foreach group g € VM GroupList do
foreach core ¢ € g.vcpucorelist do
‘ c.coreprice = 0 ;
end
end
oreach group g € VMGroupList do
foreach VM v € g.umlist do
foreach i € [0, v.nvcpu — 1] do
Select ¢ from g.vcpucorelist with the minimum core price ;
g.comid =v g.cocpu =1
g.c.coreprice = g.c.coreprice + v.spendingrate ;
14 end

© 0 NO A W N
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15 end
16 end

Figure 2: Phase 2 of algorithm

VCPU allocation The second phase of the algorithm is described in
Figure 2] In this phase, the VCPUs of these VMs are mapped to the
node cores. It is efficient to put the VCPUs of a VM in separate cores
than in the same core since the VCPUs can be executed without any
context switch. This phase begins with sorting the VMs in each group in
descending order of their spending rates. Then, we set the price of each
core in each group to zero. Next, for each group, in descending order
of the spending rate of VMs, we execute the following step. We assign
each of the VCPU of each VM to the core in that group with the smallest
price. After each assignment of a VCPU to a core, the price of that core is
incremented by the spending rate of the VM of the assigned VCPU. The
output of this phase is the mapping of VCPU’s of each VM to the cores.

VM placement Finally, the mapping of these groups of VMs to the
physical nodes is performed and the resource share that has to be allo-
cated to the VMs is computed. The simplest placement algorithm would
be First Fit. However, since the algorithm is executed in each scheduling
interval during which new application requests can come or existing ap-
plication requests may be edited, the grouping of VMs computed in this
interval can be different from that of the previous scheduling interval. As
a result, some VMs need to be migrated to other physical nodes. To min-
imize the number of migrations, the placement of VMs to the nodes needs
to consider the previous placement of VMs also. We propose a migration
plan computation algorithm that minimizes the number of migrations of
VMs. Figure |3|describes this phase.
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Data: VMGroup - List of VM’s to be placed together
node[l..n] - The list of physical nodes available
n - The number of physical nodes
chosen|l..n] - Represents the mapping of VMGroups to nodes
migration[l..n][1..n] - The migration matrix
foreach i € [0,n — 1] do
if node[i] didn’t exist in the previous allocation round then
foreach j € [0,n — 1] do
‘ migration[i][j] = 0 ;
end
nd
else
foreach j € [0,n — 1] do
foreach VM v allocated to nodeli] do
if v ¢ VMGroupl[j] and ezists in the current allocation
round then
| migration[i][j] = migration[i][j] + 1
end

[¢]

end
end

end
end
foreach i € [0,n — 1] do
chosen[i] = -1 ;

end
foreach row k in migration do
p = migration[k][j], which is the smallest in the row migrationl[k] ;
if 3Im such that chosen[m] = j then
p1 = migration|k][j1] such that p; is the next highest element
in row k to p. ;
q = migration[m][j]. ;
g1 = migration|m]|[j2] such that ¢1 is the next highest element
in row m after q ;
if p+q1 < ¢+ p1 then

‘ chosen[k] = 7 Go to step 22 with k = m and j=j2
end
else

‘ Go to step 22 with k = k and j=j;
end

end
else
| chosenlk] = j
end

end
foreach i € [0,n — 1] do
foreach VM v allocated to nodeli] do
g = the group to which v belongs ;
v.share = (v.spendingrate/g.groupprice) x node[i].capacity

end
end

Figure 3: Phase 3 of algorithm
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Lines 1 to 15 of the algorithm compute the migration matrix, migration|[][].

The migration matrix keeps track of the number VM migrations required
for each node, when a certain VMGroup is placed on it. Each row of the
matrix corresponds to each node, and the columns correspond to each
V M Group For example, the element migration[i][j] gives the number of
VMs that has to be migrated from the i’th node when the VM group j
is allocated to it. Lines 2 to 15 are performed for each node[i]. If nodel]
has been added in the current scheduling interval, we set all elements
corresponding to the row migration[i] to 0 since there are no VMs that
needs to be migrated from node[i]. Otherwise, we check if each of the VM
v that was allocated to modeli] in the previous round, doesn’t belong to
V MGroup[j] and exists in the current allocation round. If so, it means
that placing V M Group[j] on nodeli] would lead to the removal of VM v
and thus to a migration. Hence, we increment the element migration[i][j].

Lines 20 to 36 describe the mapping of the VM groups to the nodes.
This mapping is stored in the array chosen. For each row in the migra-
tion matrix, the column which contains the minimum element in that row
gives the VM Group that when placed on that node, leads to a minimum
number of migrations. If the VM group is already assigned to another
node, then the element that is the next higher to the minimum is found
and the steps to find the allocation with minimum migrations is computed
as shown in figures 22-33. We consider that at this step the VM group
that was the best assignment for node i was already assigned to node m.
Basically this translates in the fact that for row 4, the 4" column element
is the minimum, but the j** column is already assigned to row m. In
this case we try to see if keeping the assignment of VM group j to node 4
and assigning another VM group to node m is better (Lines 22-33). For
this, we find the elements migration[m][j] and migration[m][j1] such that
migration[m][j1] is the next highest element to migration[m][j] in row m.
Similarly, we find elements migration[i][j] and migration[i][j2] such that
magration[i][j2] is the next highest element to migration[i][j] in row 4. If
the total number of migrations from this exchange is less than assigning
another VM group to the node ¢ (the sum of migrationli][j| and migra-
tion[m][j1] is less than the sum of migration[i][j2] and migration[m][j]),
then the VM group j is assigned to node i (Line 27) and the steps are
re-taken to find a new mapping for node m. Otherwise, the same steps are
re-taken to check the new mapping of VM group j2 to node i. At the end
of this phase, the CPU shares are computed for each VM (lines 38-41).

Example We illustrate the algorithm through the following use case.
We consider an infrastructure with 3 physical nodes with 4 cores each.
Thus the total infrastructure capacity is C=1200. 3 applications are sub-
mitted to the infrastructure. The application requests are of the form
(spendingrate, number of VMs, number of VCPUs) and are the following:
A; —(70,2,3) ; Az — (60,2,3); Az — (40,2,3) . The total resource price
is: Pricesystem = 70+ 60 + 40 = 170

Figure [fa] represents the initial scenario where each group of nodes is
initialized with a 0 price. Figure [gb] and Figure show the execution
of phase 1 where the VM with highest spending rate is assigned to the
group with the least price. To start with, in our example, the VM with the
highest spending rate(35), is assigned to the group with the least price(0).
After this, the spending rate of the assigned VM(35) is added to the price

11



Al AZ Ai AZ Ai
BN 30 30 0 2 30 0 20
) ) . 35 35 30
e RS sy Price =35 Price =35 Price =30
Group 1 Group 2 Group3 Group 1 Group2 Group3
(a) (b)
[
20 20
35 3% 30 30 35 20 5 0 30 30
Price=35 Price=35 Price = 60 Price =55 Price =55 Price =60
Group 1 Group 2 Group3 Group 1 Group2 Group3
(c) (d)
Figure 4: Phase 1 - Grouping of VMs
35 20 35 20 30 30
s SR\ g\ A B || &\ \
i \? BGCNEV A,
e s y R ~ A - A - A .
‘R R 'R I N X N i N W 7 X
0000 e00© 0@ @
Group 1 Group 2 Group 3

Figure 5: Phase 2 - VCPU to core assignment

of VM group 1. If there are multiple VMs with the same highest price,
the first VM is chosen. Similarly, if there are multiple groups with the
smallest price, the first group is chosen. Then, the algorithm proceeds to
assign the remaining VMs to the VM groups.

Figure [5] shows the assignment of VCPUs to the physical cores. The
circles represent the cores of each physical node and the lines represent
the VCPU of a VM which is assigned to a particular core. The first group
is chosen and the price of all the cores are set to zero. The VM with the
highest spending rate is chosen and each of its VCPU is assigned to the
core with the least price. This is done until all VCPUs are assigned to

cores. Similarly, this is done for groups 2 and 3.

12



4 Implementation

In this section, we describe the details of the implementation. We first
give an overview of the system and then describe the resource manager
configuration and its main execution steps.

4.1 System Overview

Figure [f] shows the architecture of our system. Users submit the requests
to a central resource manager(the proportional-share scheduler) that re-
sides on the frontend of the cloud. The resource manager provisions the
VMs from a virtual infrastructure manager(OpenNebula). OpenNebula is
an opensource toolkit for cloud infrastructures. The main functionalities
provided by OpenNebula are user and physical host management, VM
and virtual network management. Users can provision VMs in the cloud
by submitting to OpenNebula a template file, which describes the VM
requirements like memory and CPU. OpenNebula has a resource manager
daemon which selects the physical nodes to deploy the VMs and allocates
resources like CPU capacity, memory to the VMs. The resource manager
in OpenNebula is an independent daemon which can be replaced by third
party schedulers. We implemented our resource manager and integrated
it with OpenNebula using the provided XML-RPC interface.

We have implemented the Proportional share resource manager in

Python. For the interaction with OpenNebula, we used a part of the
Haizea code [5]. The XML-RPC calls, the datastructures to store the
parameters obtained from the calls are inspired from Haizea code.
The enforcement of physical allocations was done through the Xen hy-
pervisor that resided on each OpenNebula compute node. We chose Xen
because it provides fine grained allocation control of CPU to the VMs and
can also pin the VCPUs of each VM to cores. To store the application
requests, we use a MySQL database on the OpenNebula frontend.

% Submit, edit or delete
User requests (onegroup

l command)

Proportional-Share

Scheduler ';Stores andreceives MYSQL

application requests
(Spending rate,

XML-RPC #VM,VMtemplate)
OpenNebula
XenHypervisor J Xen Hypervisor Xen Hypervisor
I, ________ | — e = .
| 1
1 1
| 1Ly ]

Figure 6: System Architecture
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4.2 Resource Manager Configuration

The resource manager has a set of parameters that can be modified by the
system administrator. These parameters are included in a configuration
file named defaults.py. Table [2| describes all the parameters that can be
tuned. To start the resource manager, we execute the command,
scheduler start

and to stop the resource manager, we execute the command,

scheduler stop

Parameter Description

LOGFILE The file to which the logs of the resource man-
ager is to be written

ON_RPC_PORT The XML-RPC server port of OpenNebula
ON_RPC_HOST The host on which the XML-RPC server is
running

ON_XMLRPC_URI | The URI used to connect to the OpenNebula
XML-RPC server

MYSQL_SERVER The host where MYSQL server is running
MYSQL_ USER The username to login to the MYSQL server
MYSQL PASSWD The password of MYSQL _USER to login to
the MYSQL server

WAITTIME The scheduling interval of the resource man-
ager in seconds
DEPLOYTIME The time(in seconds) that the resource man-

ager needs to sleep to ensure that the VMs
have been deployed and starts running at a
node. This time depends on the time it takes
for OpenNebula to deploy VMs in nodes.

Table 2: The configuration parameters of the resource manager.

4.3 Resource Manager-System Interaction

The resource manager once started executes in rounds. The scheduling
interval can be set using the WAITTIME configuration parameter. Once
started, the resource manager daemon executes the following steps :

1. It creates the required tables in the database scheduler, if they don’t
exist. The application request data is stored in two tables, groups
and vms. The schema of the tables are shown in Table [Bland Table

@

2. It connects to the XML RPC server of OpenNebula.

3. It retreives from OpenNebula the current host configuration. This
involves invoking the XML-RPC call one.hostpool.info.

4. It retreives from the database scheduler the list of submitted ap-
plication requests and identifies if they are already submitted VM
requests or edited requests(using the changeparam column in vms ta-
ble) or if they are newly submitted VM requests. Then, it retrieves
the VM details from OpenNebula using XML-RPC call one.vm.info.

5. If there is at least one physical node in the cloud and there are new
or edited VM requests, it executes steps 6 to 7.
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6. It executes the algorithm described in pseudocode in Section 3. First,
phase 1 of the algorithm is executed and the VMs that are to be
placed together in the same node are found. Then, it executes phase
2 of the algorithm and the mapping of the VCPUs of the VMs to the
cores of the nodes is performed. Finally, it executes the final phase
and the group of VMs are mapped to the physical nodes. In the
first round of resource manager execution, the allocation is done in
round robin way. Starting with the second round, the re-mapping of
VMs to physical nodes is performed. Also, the resource share that
each VM receives is computed at the end of this phase.

7. The VM’s are deployed on the nodes. There are three different
cases in this scenario. i) New VM requests ii) Allocation change for
existing VMs iii) Allocation change for existing VMs that have to
be migrated. In case of new VM requests, they are deployed in the
nodes. This is done executing the one.vm.deploy XML-RPC call.
The resource manager waits DEPLOYTIME seconds, which ensures
that the deployment of the VMs on nodes is done and the VMs
are running. In case of VMs that are already running, the resource
manager handles the following cases: (i) if the VMs need to be
migrated to a new node, the resource manager invokes the migrate
operation of OpenNebula by executing the one.vm.migrate XML-
RPC call, sets the CPU share for each VM and pins the VCPUs
to the cores. (ii) if only their VM resource allocation changes, the
resource manager sets the resources accordingly. In all the three
cases mentioned above, the resource manager sets the cpu shares
and pins the VCPUs to the cores by communicating with the Xen
VMM of each host.

8. The resource manager sleeps for WAITTIME seconds.
9. Step 3 is repeated.

Column Type

groupid int (primary key) Column Type
vmtemplate | varchar(1000) vmid int (primary key)
spendingrate | double groupid int (foreign key)
nvm int changeparam | int

Table 3: Schema of table vms Table 4: Schema of table groups

5 Evaluation

In this section, we describe the experiments we ran to study the allocation
dynamics of our proportional share resource manager. We performed an
experiment to measure the performance of the application with different
spending rates. In the following subsections, we describe the setup and
results we obtained.

5.1 Evaluation setup

The experiments were run on the Grid’5000 testbed. We used 10 nodes
with 8 cores as the compute nodes of the cloud. The nodes were config-
ured with Debian images with support for the Xen VMM.
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We consider the case when one or more users submits a benchmark
application with different spending rates. We selected the NAS Bench-
mark Application which generates independent Gaussian random variates
using the Marsaglia Polar Method. This is an embarassangly parallel ap-
plication.

We split the user requests to four different classes which are described
in the Table [5] 20 such requests were submitted in two rounds. The

Class of Application (Spending rate, #VM, #VCPU)
Class 1 (30,1,8)

Class 2 (60,1,8)

Class 3 (90,1,8)

Class 4 (120,1,8)

Table 5: The relation between the request parameters and the application class

applications start running as soon as the VM’s are booted.

5.2 Results

Figure [7]shows the distribution of execution times for each request class.
The results show that the applications with higher spending rate com-
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Application Runtime(in seconds)

1 2 3 4
Applications

Figure 7: Execution time for different applications

plete faster than the others. Thus, the proportional share algorithm is
fair, since the share of CPU allocated to each application is relatively ac-
cording to its spending rate.

We also evaluated the improvement brought by our VM placing algo-
rithm. We found that with our migration algorithm, 4 VM’s were migrated
while with the "naive" round robin placement scheme 8 VM’s had to be
migrated. Thus, our node allocation algorithm minimizes the number of
migrations of VMs compared to classic allocation strategies like round
robin.
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6 Conclusion

Cloud computing infrastructure providers became popular due to the pro-
visioning model they offer to users. This provisioning model is attractive,
as users can lease and release virtual machines on demand, for as much
and as long their application needs them. However, current cloud resource
managers lack the capability to distinguish between the priorities of user
requests. Users needing resources more than others cannot make the re-
source manager aware of their importance. Also, their inability to provide
feedback about the resource availability and resource utilization makes it
difficult for the applications to adapt their resource requirements accord-
ing to the state of the infrastructure and their QoS goal.

In this report we proposed a dynamic resource manager for private
cloud infrastructures that allocates resources to virtual machines dynam-
ically during their runtimes and provides feedback to applications re-
garding the infrastructure’s resource availability. Our resource manager
relies on a proportional-share auction model to partition resources be-
tween applications. To our knowledge this is the first implementation of
proportional-share allocation for VMs in a private cloud. The pricing and
bidding model used by our resource manager gives a fair, easy to use and
scalable solution for resource allocation. Moreover, we take advantage of
the multi-core nodes to provide a more fine-grained allocation of resources
to virtual machines. Thereby, our resource manager is able to provide a
better utilization of the available resources in a private cloud. We have
implemented a prototype of the resource manager and integrated it with
OpenNebula. We have performed real experiments on Grid’5000. Our
experiments have shown that the proposed resource manager is able to
provide service differentiation to applications based on their priorities.
Our work opens up new perspectives for designing policies to meet appli-
cation performance goals on such an infrastructure.

As future work, we plan to extend the current mechanism to manage
heterogeneous infrastructures and multiple resource types. For a more
scalable solution, we will investigate methods of decentralizing the cur-
rent implementation. Finally, we plan to evaluate the scalability of the
mechanism on a larger testbed.
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Appendix A - User Manual

In this section we describe the interface that is provided to the users to
request resources for their applications and the steps required to install
the resource manager on the OpenNebula frontend. The structure of an
application request consist of the VM template, spending rate and the
number of VM’s. The user can create,edit,list and delete the requests.
Correspondingly, VMs are created or deleted through the XML-RPC in-
terface of the OpenNebula.

The following are the steps to be followed to use the proportional share
resource manager, assuming that OpenNebula is already installed in the
frontend machine and the OpenNebula scheduler is not running.

1. Place the scheduler folder in a directory of your choice and set
the PATH variable to that scheduler directory. The scheduler dae-
mon(which includes onegroup command also) should be installed
in the frontend of the OpenNebula machine since the daemon uses
OpenNebula user permissions to SSH to the physical nodes in the
cloud.

2. Make sure that the OpenNebula ONE_AUTH env variable is set.

3. Install MySQL server in any machine and create database scheduler
in it. Make sure that the resource manager daemon is be able to
connect to the MySQL server.

4. Set the parameters in defaults.py with appropriate values.

5. Use the onegroup command to create,edit,list or delete application
request. The usage of the onegroup command is :
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onegroup [OPTIONS] [create[edit/delete/list]

-t —template
-§ —srate
-n —num

Table [6] describes the usage of onegroup command.

. To start the resource manager execute
scheduler start

. To stop the resource manager execute
scheduler stop

. View the logs of the resource manager in LOGFILE defined in de-
faults.py

Command Description | Output XML-RPC call
of parame-
ters
onegroup | template - | Creates a request | one.vm.allocate

create -t tem-
plate -s srate
-n num

VM template

srate - spend-
ing rate
nuvm - Num-

with the specified pa-
rameters. It assigns
an id to the request
stored as groupid

onegroup list

ber of VMs

Lists all the request
with values - groupid,
spending rate, #VM,
vmid(ID of VMs cre-
ated for that request)

onegroup edit
groupid -s
srate -n nvm

groupid - id of
the request

srate - spend-
ing rate

nvm - Num-
ber of VMs

Edits the parame-
ters associated with
the request with id
groupid

one.vm.action with
parameter 'finalize’

one.vm.allocate

onegroup
delete groupid

groupid - id of
the request

Deletes the request
with the id groupid

one.vm.action with
parameter 'finalize’
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Table 6: Different usages of onegroup command
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