
Formal Verification of Firewall Rules

February 17, 2010

1



1 Introduction

Firewall rules are executed in a sequential order. The action to be taken on an
incoming packet is determined by the first rule that matches the packet. There
may be cases where certain rules are never executed, since they are preceded
by some other rules which match all the packets that are matched by them.
This occurs when some specific rule is preceded by some general rule. Rule-i
is said to be more specific than rule-j if all packets satisfied by rule-i is also
satisfied by rule-j. A firewall rule can be said to be correct if the specific rules
always precedes general rules. The main aim of the project is to find whether
any general rule is preceding a specific one.

In order to verify the correctness of firewall based on ordering of its rules, we
define a partial order relation for the rules. The partial order relation is defined
based on the generalisation of the rules.

2 Representation of firewall rules

Let R denote the set of firewall rules.
Let port = { 0,1,2,...65535, ∗port },
IP ={address/prefix − length| address is a 32 bit string and 0 ≤ prefix −
length ≤ 32} ∪ {∗ip},
protocol = { tcp, udp, icmp, ∗protocol },
action = {DENY,ACCEPT}.
The set of firewall rules, R ⊂ port × IP × port × IP × protocol × action. A
firewall rule can be represented by a tuple r ∈ R.

3 Definition of partial order on firewall rules

The partial order relation that we are defining is ”is specific than” v. Inorder
to define the partial order on R, we first define partial order on the component
sets of R.

The ”is specific than” relation on port is defined as follows. Let p1, p2 ∈ port.

p1 v p2 ⇔ p1 = p2 or p2 = ∗port

Similarly we now define the relation on IP. Let a1, a2 ∈ IP.a1, a2 6= ∗ip.
For x ∈ IP, let x.address(n) return the first n bits of address represented by x.
If a1.address(min(a1.prefix-length,a2.prefix-length)) = a2.address(min(a1.prefix-
length,a2.prefix-length)) then

1. a1.prefix-length ≤ a2.prefix-length ⇒ a2 v a1

2. a2.prefix-length ≤ a1.prefix-length ⇒ a1 v a2

Also,
∀x ∈ IP, x 6= ∗ip ⇒ x v ∗ip

2



The ”is specific than” relation on protocol can be defined as following.Let
p1, p2 ∈ protocol.

p1 v p2 ⇔ p1 = p2 or p2 = ∗protocol

Two elements x1 and x2 is said to be related, that is

x1 on x2 ⇔ x1 v x2 ∨ x2 v x1

else x1 and x2 is said to be not related.

x1 6on x2 ⇔ ¬(x1 v x2) ∧ ¬(x2 v x1)

Now we can define the ”is specific than” relation on a set of firewall rules R.
Let r1, r2 ∈ R and let r1 = (sp1, sip1, dp1, dip1, prot1, a1) and
r2 = (sp2, sip2, dp2, dip2, prot2, a2) .

r1 v r2 ⇔ (sp1 v sp2)∧
(sip1 v sip2)∧
(dp1 v dp2)∧

(dip1 v dip2)∧
(prot1 v prot2)

We define partial order relation only on ordered set of firewall rules. Two
rules r1, r2 are said to be in DISORDER if there exists some fields in r1 which
are v the corresponding fields in r2 and all the other fields in r1 w corresponding
fields in r2.

In case of disordered set of rules, we first convert them into a set with no
disordered pair of rules. We introduce the function ORDER which takes the
disordered tuples as input and generates an ordered set of tuples as output.

ORDER (R)
{

if R has no disordered pairs then
done

else
select pair of disordered rules from R

Y = split(pairs)
ORDER(R - pairs ∪ Y)

}

The following algorithm checks whether the given set of firewall rules with
out any disorder pairs is in correct order. A set of firewall rules R is said to be
in correct order if no general rule precedes a specific rule. That is if

∀ri, rj ∈ R, i < j,¬(rj v ri)

3



Algorithm to check whether a set of firewall rules is correctly ordered

We propose an algorithm using graphs for verifying whether the above condition
is satisfied. The nodes of the graphs are used to represent the firewall rules. Let
(r1, r2..., rn) be the set of firewall rules on which partial ordering is defined. The
rules are scanned in a a sequential manner.
Let G be the graph.
We define the following :
addComponent(Component c)

Adds a new component c to G.
addNode(Component c,Node n)

Adds node n to the component c.
c.end

Denotes the node corresponding to the most general rule in component c.

ALGORITHM

1. Add a component c to G and add rule r1 as node r1 to c.

2. Scan the rules sequentially.

3. When a rule ri is reached

(a) for all nodes rj where rj = ci.end for any ci in G, if( ri 6on rj ) then

• addComponent(ck)

• addNode(ck,ri )

(b) for all components ci of G, find rj on ri where rj = ci.end
for any rj , if ri v rj then

There is an incorrect ordering
else

for all rj ,

• add edge rj –> ri

• cnew = Merge all ci to one component.
• cnew.end = ri

Advantages of our system

• We define safe operations on the partial order relations like safe-insert and
safe-delete.

• Firewall rules follow graph structure.

4 Related Works

In [1], [2] and [3], the different kinds of firewall policy anomalies are discussed.
The different anomalies identified are:

4



1. Shadowing

2. Correlation

3. Generalization

4. Redundancy

The papers [1], [2] and [3] introduces a technique for the detection of these
anomalies in the firewall rule set. They have implemented it using tree. The
nodes represent the tuples and the edges represent the values of the tuple in
the rule. When a rule is detected, a new branch is inserted in the tree and
if there is a chance of the branch being overlapping, then they conclude that
there is a conflict in the rules. Hence all the conflicting rule pairs are identi-
fied. But, in [5], it is mentioned that this technique is of exponential complexity.

In [4], two algorithms for resolving the anomalies identified in [1], [2] and
[3] are proposed. The main aim of the first algorithm is to produce completely
disjoint rules. Shadowing and correlation are resolved by splitting the rules and
deleting the rules which are not required. The disadvantage is that each rule
might be split to a large number of rules. They haven’t mentioned properly how
these would be done. In the second algorithm, shadowing and post redundancy
are resolved by making the specific rule to precede the general rule. Exact
match is resolved by deleting one of the rules. They define a relation RIM on
the rule set and prove that RIM is a partial order relation. They have defined
an ordering function where the specific rule precedes the general rule. The or-
dering functions says that if RxRIMRy then index of Rx < index ofRy. Their
algorithm takes a set of disordered pair of rules as input and reorder the rules
to resolve the conflict. They also show that the complexity of this algorithm is
O(n2).

Our paper proposes a mechanism to detect shadowing and post redundancy
in firewall rule set. The technique can be used only on ordered set of firewall
rules. By ordered set of firewall rules, we mean the set without any correlation
anomaly. Hence, our aim is :

• To resolve correlation

• To detect and resolve shadowing and post redundancy

Correlation anomaly can be resolved by splitting the rules to become dis-
joint. For each firewall rule, its correlation with all preceding firewall rules must
be detected and corresponding splitting should be done. But the disadvantage
is that the number of resultant rules will be very large.

The main motivation behind resolving correlation and then detect the other
anomalies is that an iterative solution to solve both of them is difficult. It
would always be good if both can be performed together. That is for each rule,
if correlation anomaly can be resolved and the anomalies resolved then itself.
That would reduce the complexity to a great extent.

5



References

[1] H Al-shaer, E Hamed. Modeling and management of firewall policies. In
IEEE eTransactions on Network and Service Management.

[2] Hazem Boutaba Raouf Hasan Masum Al-shaer, Ehab Hamed. Conflict clas-
sification and analysis of distributed firewall policies.

[3] Hazem H Al-shaer, Ehab S Hamed. Firewall policy advisor for anomaly
discovery and rule editing. Information Systems.

[4] Alex X Liu. Formal verification of firewall policies. 2008.

[5] S Pozo, R Ceballos, and R. M. Gasca. Fast algorithms for consistency-based
diagnosis of firewall rule sets.

6


